Зависимые и независимые события. Условная вероятность

Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей

Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.

Теоремы сложения вероятностей

Найдем вероятность суммы событий и (в предположении их совместности либо несовместности).


Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:



Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го - 0,04; 46-го и большего - 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.


Решение. Искомое событие произойдет, если будет продана пара обуви 44-го размера (событие ) или 45-го (событие ), или не меньше 46-го (событие ), т. е. событие есть сумма событий . События , и несовместны. Поэтому согласно теореме о сумме вероятностей получаем



Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.


Решение. События "очередной будет продана пара обуви меньше 44-го размера" и "будет продана пара обуви размера не меньше 44-го" противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события



поскольку , как это было найдено в примере 1.


Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой "Electra Ltd" оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно . Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим . Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.


Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).


Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:


Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.


Пример 3. Монета брошена два раза. Вероятность появления "герба" в первом испытании (событие ) не зависит от появления или не появления "герба" во втором испытании (событие ). В свою очередь, вероятность появления "герба" во втором испытании не зависит от результата первого испытания. Таким образом, события и независимые.


Несколько событий называются независимыми в совокупности , если любое из них не зависит от любого другого события и от любой комбинации остальных.


События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события , вычисленная в предположении осуществления другого события , называется условной вероятностью события и обозначается .


Условие независимости события от события записывают в виде , а условие его зависимости - в виде . Рассмотрим пример вычисления условной вероятности события.

Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.


Решение. Обозначим извлечение изношенного резца в первом случае, а - извлечение нового. Тогда . Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.


Обозначим событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:



Следовательно, вероятность события зависит от того, произошло или нет событие .

Формулы умножения вероятностей

Пусть события и независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий и .


Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:



Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:


Пример 5. Три ящика содержат по 10 деталей. В первом ящике - 8 стандартных деталей, во втором - 7, в третьем - 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.


Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие ), . Вероятность того, что из второго ящика взята стандартная деталь (событие ), . Вероятность того, что из третьего ящика взята стандартная деталь (событие ), . Так как события , и независимые в совокупности, то искомая вероятность (по теореме умножения)



Пусть события и зависимые, причем вероятности и известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие , и событие .


Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:



Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие ), при втором - черный (событие ) и при третьем - синий (событие ).


Решение. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность . Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором - черный, . Искомая вероятность


Формула полной вероятности

Теорема 2.5. Если событие наступает только при условии появления одного из событий , образующих полную группу несовместных событий, то вероятность события равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность события :



При этом события называются гипотезами, а вероятности - априорными. Эта формула называется формулой полной вероятности.


Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором - 30%, на третьем - 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.


Решение. Обозначим событие, означающее годность собранного узла; , и - события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда



Искомая вероятность


Формула Байеса

Эта формула применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий , образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез . Априорные (до опыта) вероятности известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности . Для гипотезы формула Байеса выглядит так.

Пусть вероятность события В не зависит от появления события А .

Определение. Событие В называют независимым от события А , если появление события А не изменяет вероятности события В , т.е. если условная вероятность события В равна его безусловной вероятности:

Р А (В ) = Р (В ). (2.12)

Подставив (2.12) в соотношение (2.11), получим

Р (А )Р (В ) = Р (В )Р В (А ).

Р В (А ) = Р (А ),

т.е. условная вероятность события А в предположении, что наступило событие В , равна его безусловной вероятности. Другими словами, событие А не зависит от события B .

Лемма (о взаимной независимости событий) : если событие В не зависит от события А , то и событие А не зависит от события В ; это означает, что свойство независимости событий взаимно .

Для независимых событий теорема умножения Р (АВ ) = Р (А ) Р А (В ) имеет вид

Р (АВ ) = Р (А ) Р (В ), (2.13)

т.е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Равенство (2.13) принимают в качестве определения независимых событий. Два события называются независимыми, если появление одного из них не меняет вероятность появления другого.

Определение. Два события называют независимыми , если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми .

На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.

Пример . Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие А ) равна 0,8, а вторым (событие В ) – 0,7.

Решение. События А и В независимые, поэтому, по теореме умножения, искомая вероятность

Р (АВ ) = Р (А )Р (В ) = 0,7 ×0,8 = 0,56.

Замечание 1. Если события А и В независимы, то независимы также события А и , и В , и . Действительно,

Следовательно,

, или .

, или .

т.е. события А и В независимы.

Независимость событий и В , и – следствие доказанного утверждения.

Понятие независиомости может быть распространено на случай n событий.

Определение. Несколько событий называют попарно независимыми , если каждые два из них независимы. Например, события А , В , С попарно независимы, если независимы события А и В , А и С , В и С .

Для того чтобы обобщить теорему умножения на несколько событий, введем понятие независимости событий в совокупности.

Определение. Несколько событий называют независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Например, если события А 1 , A 2 , А 3 независимы в совокупности, то независимы события А 1 и A 2 , А 1 и А 3 , A 2 и А 3 ; А 1 и A 2 А 3 , A 2 и А 1 А 3 , А 3 и А 1 A 2 . Из сказанного следует, что если события независимы в совокупности, то условная вероятность появления любого события из них, вычисленная в предположении, что наступили какие-либо другие события из числа остальных, равна его безусловной вероятности.



Подчеркнем, что если несколько событий независимы попарно, то отсюда еще не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости.

Поясним сказанное на примере. Пусть в урне имеется 4 шара, окрашенные: один – в красный цвет (А ), один – в синий цвет (В ), один – в черный цвет (С ) и один –во все эти три цвета (АВС ). Чему равна вероятность того, что извлеченный из урны шар имеет красный цвет?

Так как из четырех шаров два имеют красный цвет, то Р (А ) = 2/4 = 1/2. Рассуждая аналогично, найдем Р (В ) = 1/2, Р (С ) = 1/2. Допустим теперь, что взятый шар имеет синий цвет, т.е. событие В уже произошло. Изменится ли вероятность того, что извлеченный шар имеет красный цвет, т.е. изменится ли вероятность события А ? Из двух шаров, имеющих синий цвет, один шар имеет и красный цвет, поэтому вероятность события А по-прежнему равна 1/2. Другими словами, условная вероятность события А , вычисленная в предположении, что наступило событие В , равна его безусловной вероятности. Следовательно, события А и В независимы. Аналогично придем к выводу, что события А и С , В и С независимы. Итак, события А , В и С попарно независимы.

Независимы ли эти события в совокупности? Оказывается, нет. Действительно, пусть извлеченный шар имеет два цвета, например синий и черный. Чему равна вероятность того, что этот шар имеет и красный цвет? Лишь один шар окрашен во все три цвета, поэтому взятый шар имеет и красный цвет. Таким образом, допустив, что события В и С произошли, приходим к выводу, что событие А обязательно наступит. Следовательно, это событие достоверное и вероятность его равна единице. Другими словами, условная вероятность Р ВС (А )= 1 события А не равна его безусловной вероятности Р (А ) = 1/2. Итак, попарно независимые события А , В , С не являются независимыми в совокупности.

Приведем теперь следствие из теоремы умножения.

Следствие. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Доказательство. Рассмотрим три события: А , В и С . Совмещение событий А , В и С равносильно совмещению событий АВ и С , поэтому

Р (АВС ) = Р (АВ×С ).

Так как события А , В и С независимы в совокупности, то независимы, в частности, события АВ и С , а также А и В . По теореме умножения для двух независимых событий имеем:

Р (АВ×С ) = Р (АВ )Р (С ) и Р (АВ ) = Р (А )Р (В ).

Итак, окончательно получим

Р (АВС ) = Р (А )Р (В )Р (С ).

Для произвольного n доказательство проводится методом математической индукции.

Замечание. Если события А 1 , А 2 , ...,А n независимы в совокупности, то и противоположные им события также независимы в совокупности.

Пример. Найти вероятность совместного появления герба при одном бросании двух монет.

Решение. Вероятность появления герба первой монеты (событие А )

Р (А ) = 1/2.

Вероятность появления герба второй монеты (событие В )

Р (В ) = 1/2.

События А и В независимые, поэтому искомая вероятность по теореме умножения равна

Р (АВ ) = Р (А )Р (В ) = 1/2 ×1/2 = 1/4.

Пример. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика вынута стандартная деталь (событие А ),

Р (А ) = 8/10 = 0,8.

Вероятность того, что из второго ящика вынута стандартная деталь (событие В ),

Р (В ) = 7/10 = 0,7.

Вероятность того, что из третьего ящика вынута стандартная деталь (событие С ),

Р (С ) = 9/10 = 0,9.

Так как события А , В и С независимые в совокупности, то искомая вероятность (по теореме умножения) равна

Р (АВС ) = Р (А )Р (В )Р (С ) = 0,8×0,7×0,9 = 0,504.

Приведем пример совместного применения теорем сложения и умножения.

Пример. Вероятности появления каждого из трех независимых событий А 1 , А 2 , А 3 соответственно равны р 1 , р 2 , р 3 . Найти вероятность появления только одного из этих событий.

Решение . Заметим, что, например, появление только первого события А 1 равносильно появлению события (появилось первое и не появились второе и третье события). Введем обозначения:

B 1 – появилось только событие А 1 , т.е. ;

B 2 – появилось только событие А 2 , т.е. ;

B 3 – появилось только событие А 3 , т.е. .

Таким образом, чтобы найти вероятность появления только одного из событий А 1 , А 2 , А 3 , будем искать вероятность P (B 1 + B 2 + В 3) появления одного, безразлично какого из событий В 1 , В 2 , В 3 .

Так как события В 1 , В 2 , В 3 несовместны, то применима теорема сложения

P (B 1 + B 2 + В 3) = Р (В 1) + Р (В 2) + Р (В 3). (*)

Остается найти вероятности каждого из событий В 1 , В 2 , В 3 . События А 1 , А 2 , А 3 независимы, следовательно, независимы события , поэтому к ним применима теорема умножения

Аналогично,

Подставив эти вероятности в (*), найдем искомую вероятность появления только одного из событий А 1 , А 2 , А 3.

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности , если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события Bи обозначается P{A|B}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости - в виде P{B|A}≠P{B}.

Вероятность события в испытаниях Бернулли. Формула Пуассона.

Повторными независимыми испытаниями, испытаниями Бернулли или схемой Бернулли называются такие испытания, если при каждом испытании имеются только два исхода - появление события А или и вероятность этих событий остается неизменной для всех испытаний. Эта простая схема случайных испытаний имеет большое значение в теории вероятностей.

Наиболее известным примером испытаний Бернулли является опыт с последовательным бросанием правильной (симметричной и однородной) монеты, где событием А является выпадение, например, "герба", ("решки").

Пусть в некотором опыте вероятность события А равна P(А)=р , тогда , где р+q=1. Выполним опыт n раз, предположив, что отдельные испытания независимы, а значит исход любых из них не связан с исходами предыдущих (или последующих) испытаний. Найдем вероятность появления событий А точно k раз, скажем только в первых k испытаниях. Пусть - событие, заключающееся в том, что при n испытаниях событие А появиться точно k раз в первых испытаниях. Событие можно представить в виде

Поскольку опыты мы предположили независимыми, то

41)[стр2] Если ставить вопрос о появлении события А k-раз в n испытаниях в произвольном порядке, то событие представимо в виде

Число различных слагаемых в правой части этого равенства равно числу испытаний из n по k , поэтому вероятность событий , которую будем обозначать , равна

Последовательность событий образует полную группу независимых событий . Действительно, из независимости событий получаем

Зависимость событий понимается в вероятностном смысле, а не в функциональном. Это значит, что по появлению одного из зависимых событий нельзя однозначно судить о появлении другого. Вероятностная зависимость означает, что появление одного из зависимых событий только изменяет вероятность появления другого. Если вероятность при этом не изменяется, то события считаются независимыми.

Определение : Пусть - произвольное вероятностное пространство, - некоторые случайные события. Говорят, что событие А не зависит от события В , если его условная вероятность совпадает с безусловной вероятностью :

.

Если , то говорят, что событие А зависит от события В .

Понятие независимости симметрично, то есть, если событие А не зависит от события В ,то и событие В не зависит от события А . Действительно, пусть . Тогда . Поэтому говорят просто, что события А и В независимы.

Из правила умножения вероятностей вытекает следующее симметричное определение независимости событий.

Определение : События А и В, определенные на одном и том же вероятностном пространстве , называются независимыми , если

Если , то события А и В называются зависимыми .

Отметим, что данное определение справедливо и в случае, когда или .

Свойства независимых событий.

1. Если события А и В являются независимыми, то независимыми являются также следующие пары событий: .

▲ Докажем, например, независимость событий . Представим событие А в виде: . Поскольку события являются несовместными, то , а в силу независимости событий А и В получаем, что . Отсюда , что и означает независимость . ■

2. Если событие А не зависит от событий В 1 и В 2 , которые являются несовместными (), то событие А не зависит и от суммы .

▲ Действительно, используя аксиому аддитивности вероятности и независимость события А от событий В 1 и В 2 , имеем:

Связь между понятиями независимости и несовместности.

Пусть А и В - любые события, имеющие ненулевую вероятность: , так что . Если при этом события А и В являются несовместными (), то и поэтому равенство не может иметь место никогда. Таким образом, несовместные события являются зависимыми .

Когда рассматривают более двух событий одновременно, то попарная их независимость недостаточно характеризует связь между событиями всей группы. В этом случае вводится понятие независимости в совокупности.

Определение : События , определенные на одном и том же вероятностном пространстве , называются независимыми в совокупности , если для любого 2 £ m £ n и любой комбинации индексов справедливо равенство:

При m = 2 из независимости в совокупности следует попарная независимость событий. Обратное неверно.


Пример. (Бернштейн С.Н.)

Случайный эксперимент заключается в подбрасывании правильного четырехгранника (тетраэдра). Наблюдается грань, выпавшая книзу. Грани тетраэдра окрашены следующим образом: 1 грань - белая, 2 грань - чёрная,
3 грань - красная, 4 грань - содержит все цвета.

Рассмотрим события:

А = {Выпадение белого цвета}; B = {Выпадение черного цвета};

C = {Выпадение красного цвета}.

Тогда ;

Следовательно, события А , В и С являются попарно независимыми.

Однако, .

Поэтому события А , В и С независимыми в совокупности не являются.

На практике, как правило, независимость событий не устанавливают, проверяя ее по определению, а наоборот: считают события независимыми из каких-либо внешних соображений или с учетом обстоятельств случайного эксперимента, и используют независимость для нахождения вероятностей произведения событий.

Теорема (умножения вероятностей для независимых событий).

Если события ,определенные на одном и том же вероятностном пространстве , являются независимыми в совокупности, то вероятность их произведения равна произведению вероятностей:

▲ Доказательство теоремы следует из определения независимости событий в совокупности или из общей теоремы умножения вероятностей с учетом того, что при этом

Пример 1(типовой пример на нахождение условных вероятностей, понятие независимости, теорему сложения вероятностей).

Электрическая схема состоит из трех независимо работающих элементов. Вероятности отказов каждого из элементов соответственно равны .

1) Найти вероятность отказа схемы.

2) Известно, что схема отказала.

Какова вероятность того, что при этом отказал:

а) 1-й элемент; б) 3-й элемент?

Решение. Рассмотрим события = {Отказал k -й элемент}, и событие А = {Отказала схема}. Тогда событие А представляется в виде:

.

1) Поскольку события и несовместными не являются, то аксиома аддитивности вероятности Р3) неприменима и для нахождения вероятности следует использовать общую теорему сложения вероятностей, в соответствии с которой

Классическое определение вероятности.

Вероятность события –это количественная мера, которая вводится для сравнения событий по степени возможности их появления.

Событие, представимое в виде совокупности (суммы) нескольких элементарных событий, называется составным.

Событие, которое нельзя разбить на более простые, называется элементарным.

Событие называется невозможным, если оно не происходит никогда в условиях данного эксперимента (испытания).

Достоверные и невозможные события не являются случайными.

Совместные события – несколько событий называют совместными, если в результате эксперимента наступление одного из них не исключает появления других.

Несовместные события – несколько событий называют несовместными в данном эксперименте, если появление одного из них исключает появление других. Два события называются противоположными, если одно из них происходит тогда и только тогда, когда не происходит другое.

Вероятностью события А – Р(А) называется отношение числа m элементарных событий (исходов), благоприятствующих появлению события А, к числу n всех элементарных событий в условиях данного вероятностного эксперимента.

Из определения вытекают следующие свойства вероятности:

1.Вероятность случайного события есть положительное число, заключенное между 0 и 1:

(2)

2. Вероятность достоверного события равна 1: (3)

3. Если событие невозможное, то его вероятность равна

(4)

4. Если события и несовместны, то

5. Если события А и В совместны, то вероятность их суммы равна сумме вероятностей этих событий без вероятности их совместного наступления:

Р(А+В) = Р(А) +Р(В) - Р(АВ) (6)

6. Если и - противоположные события, то (7)

7. Сумма вероятностей событий А 1 , А 2 , …, А n , образующих полную группу, равна 1:

Р(А 1) + Р(А 2) + …+ Р(А n) = 1. (8)

В экономических исследованиях значения и в формуле могут интерпретироваться по-другому. При статистическом определении вероятности события под понимается количество наблюдений результатов эксперимента, в которых событие встречалось ровно раз. В этом случае отношение называется относительной частотой (частостью) события

События А, В называются независимыми , если вероятности каждого из них не зависит от того, произошло или нет другое событие. Вероятности независимых событий называются безусловными .

События А, В называются зависимыми , если вероятность каждого из них зависит от того, произошло или нет другое событие. Вероятность события В, вычисленная в предположении, что другое событие А уже осуществилось, называется условной вероятностью .


Если два события А и В – независимые, то справедливы равенства:

Р(В) = Р(В/А), Р(А) = Р(А/В) или Р(В/А) – Р(В) = 0 (9)

Вероятность произведения двух зависимых событий А, В равна произведению вероятности одного из них на условную вероятность другого:

Р(АВ) = Р(В) ∙ Р(А/В) или Р(АВ) = Р(А) ∙ Р(В/А) (10)

Вероятность события В при условии появления события А:

(11)

Вероятность произведения двух независимых событий А, В равна произведению их вероятностей:

Р(АВ) = Р(А) ∙ Р(В) (12)

Если несколько событий попарно независимы, то отсюда еще не следует их независимость в совокупности.

События А 1 , А 2 , …, А n (n>2) называются независимыми в совокупности, если вероятность каждого из них не зависит от того, произошли или нет любые события из числа остальных.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р(А 1 ∙А 2 ∙А 3 ∙…∙А n) = Р(А 1)∙Р(А 2)∙Р(А 3)∙…∙Р(А n). (13)